
VASILE MUSTEATA, MD, PhD, MPH, associate professor; Discipline of Hematology, State University of Medicine and Pharmacy "N. Testemitanu"

HEMATOLOGICAL MALIGNANCIES: CLASSIFICATION, ETIOLOGY, PATHOGENESIS. ACUTE LEUKEMIAS.

CHISINAU - 2020

GM-CSG = granulocyte-macrophage-colony-stimulating factor; G-CSG = granulocyte-CSF; M-CSF = macrophage-CSF lineages: CFU = colony forming unit; GEMM = granulocyte erythrocyte macrophage and monocyte; Ba = basophil; Eo = eosinophil; Meg = megakaryocyte; E = erythrocyte; NK = natural killer (adapted from Kufe et al., 2003)

DIFFERENTIATION OF PLURIPOTENTIAL STEM CELLS DURING HEMATOPOIESIS

Early morphologic	distinguisha	hologically ble; have the t of lymphocytes	Beginning of morphologic differentiation	Clear morphologic differentiation			
Mitotic activity	Low mitotic activity; self-renewing; scarce in bone marrow	High mitotic activity; self-renewing; common in marrow and lymphoid organs; mono- or bipotential	High mitotic activity; not self-renewing; common in marrow and lymphoid organs; monopotential	No mitotic activity; abundant in blood and hematopoletic organs			
Lymphoid multipotential cells	Migrate to lymphoid	Lymphocyte-colony- forming cell (LCFC)	Lymphoblast	B and T lymphor			
Pluripoter	organs	Erythrocyte-colony- forming cell (ECFC)	Erythroblast	Erythrocyte			
cell		Megakaryocyte- forming cell	Megakaryoblast	Megakaryocyte			
Myeloid multipotential		Monocyte- colony-forming cell (MCFC) MGCFC	Promonocyte	Monocyte			
cells remain ir bone marrow		Granulocyte- colony-forming cell (GCFC)	Neutrophilic myelocyte	Neutrophilic granulocyte			
		Eosinophil-colony- forming cell (EoCFC)	Eosinophilic myelocyte	Eosinophilic granulocyte			
	Ì	Basophil-colony- forming cell (BCFC)	Basophilic myelocyte	Basophilic granulocyte			

TREPANOBIOPSIA MĂDUVEI OSOASE: TABLOUL HISTOLOGIC MEDULAR NORMAL

(VARDIMAN et al., BLOOD, 30 JULY 2009 VOLUME 114, NUMBER 5)

MYELOPROLIFERATIVE NEOPLASMS (MPN)

Chronic myelogenous leukemia, *BCR-ABL1–positive* Chronic neutrophilic leukemia Polycythemia vera Primary myelofibrosis Essential thrombocythemia Chronic eosinophilic leukemia, not otherwise specified Mastocytosis Myeloproliferative neoplasms, unclassifiable

MYELOID AND LYMPHOID NEOPLASMS ASSOCIATED WITH EOSINOPHILIA AND ABNORMALITIES OF PDGFRA, PDGFRB, OR FGFR1

Myeloid and lymphoid neoplasms associated with *PDGFRA rearrangement* Myeloid neoplasms associated with *PDGFRB rearrangement* Myeloid and lymphoid neoplasms associated with *FGFR1 abnormalities*

MYELODYSPLASTIC/MYELOPROLIFERATIVE NEOPLASMS (MDS/MPN)

Chronic myelomonocytic leukemia Atypical chronic myeloid leukemia, *BCR-ABL1–negative* Juvenile myelomonocytic leukemia Myelodysplastic/myeloproliferative neoplasm, unclassifiable *Provisional entity: refractory anemia with ring sideroblasts and thrombocytosis*

(VARDIMAN et al., BLOOD, 30 JULY 2009 VOLUME 114, NUMBER 5)

MYELODYSPLASTIC SYNDROME (MDS)

Refractory cytopenia with unilineage dysplasia

Refractory anemia Refractory neutropenia Refractory thrombocytopenia Refractory anemia with ring sideroblasts Refractory cytopenia with multilineage dysplasia Refractory anemia with excess blasts Myelodysplastic syndrome with isolated del(5q) Myelodysplastic syndrome, unclassifiable Childhood myelodysplastic syndrome *Provisional entity: refractory cytopenia of childhood*

ACUTE MYELOID LEUKEMIA AND RELATED NEOPLASMS Acute myeloid leukemia with recurrent genetic abnormalities AML with t(8;21)(q22;q22); *RUNX1-RUNX1T1* AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); *CBFB-MYH11* APL with t(15;17)(q22;q12); *PML-RARA* AML with t(9;11)(p22;q23); *MLLT3-MLL* AML with t(6;9)(p23;q34); *DEK-NUP214* AML with t(6;9)(p23;q34); *DEK-NUP214* AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2); *RPN1-EVI1* AML (megakaryoblastic) with t(1;22)(p13;q13); *RBM15-MKL1 Provisional entity: AML with mutated NPM1 Provisional entity: AML with mutated CEBPA*

(VARDIMAN et al., BLOOD, 30 JULY 2009 VOLUME 114, NUMBER 5)

Acute myeloid leukemia with myelodysplasia-related changes Therapy-related myeloid neoplasms Acute myeloid leukemia, not otherwise specified AML with minimal differentiation AML with maturation AML without maturation AML with maturation Acute myelomonocytic leukemia Acute monoblastic/monocytic leukemia Acute erythroid leukemia Pure erythroid leukemia Erythroleukemia, erythroid/myeloid Acute megakaryoblastic leukemia Acute basophilic leukemia Acute panmyelosis with myelofibrosis

Myeloid sarcoma

Myeloid proliferations related to Down syndrome Transient abnormal myelopoiesis Myeloid leukemia associated with Down syndrome

Blastic plasmacytoid dendritic cell neoplasm

(VARDIMAN et al., BLOOD, 30 JULY 2009 VOLUME 114, NUMBER 5)

ACUTE LEUKEMIAS OF AMBIGUOUS LINEAGE

Acute undifferentiated leukemia Mixed phenotype acute leukemia with t(9;22)(q34;q11.2); *BCR-ABL1* Mixed phenotype acute leukemia with t(v;11q23); *MLL rearranged* Mixed phenotype acute leukemia, B-myeloid, NOS Mixed phenotype acute leukemia, T-myeloid, NOS *Provisional entity: natural killer (NK) cell lymphoblastic leukemia/lymphoma*

B LYMPHOBLASTIC LEUKEMIA/LYMPHOMA

- B lymphoblastic leukemia/lymphoma, NOS
- B lymphoblastic leukemia/lymphoma with recurrent genetic abnormalities
 - B lymphoblastic leukemia/lymphoma with t(9;22)(q34;q11.2); *BCR-ABL* 1 B lymphoblastic leukemia/lymphoma with t(v;11q23); *MLL rearranged* B lymphoblastic leukemia/lymphoma with t(12;21)(p13;q22) *TEL-AML*1 (*ETV6-RUNX1*)
 - B lymphoblastic leukemia/lymphoma with hyperdiploidy
 - B lymphoblastic leukemia/lymphoma with hypodiploidy
 - B lymphoblastic leukemia/lymphoma with t(5;14)(q31;q32) *IL3-IGH*
 - B lymphoblastic leukemia/lymphoma with t(1;19)(q23;p13.3); TCF3-PBX1

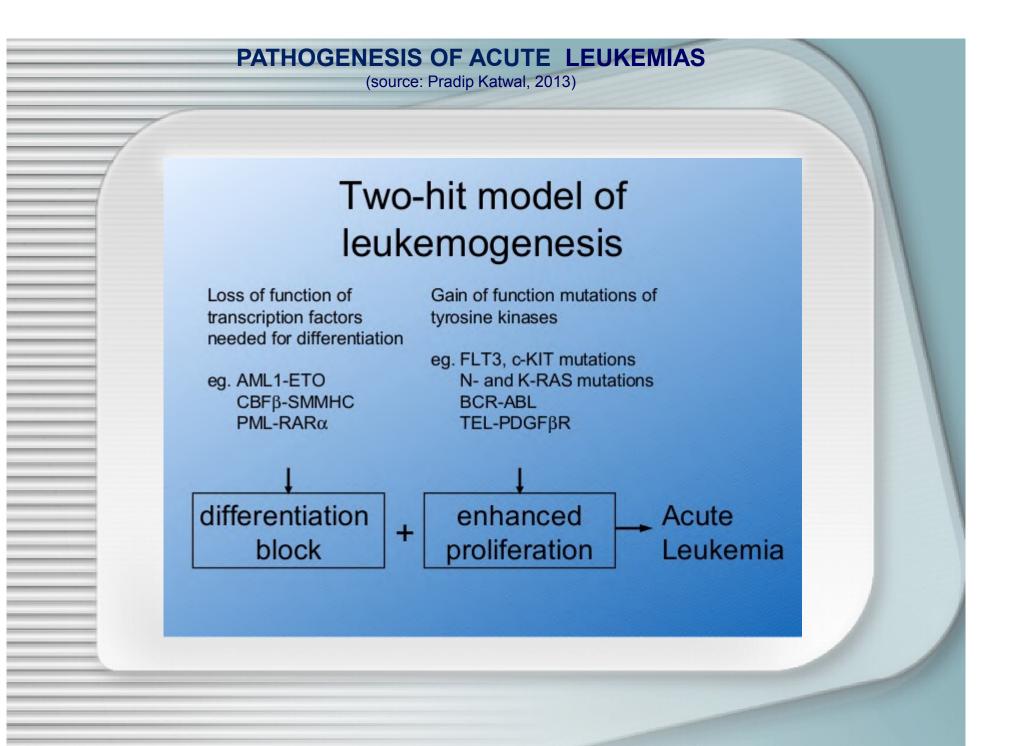
T LYMPHOBLASTIC LEUKEMIA/LYMPHOMA

NEOPLASTIC DISEASES OF THE HEMATOPOIETIC SISTEM are the disorders which develop as the result of a malignant transformation of cells of the hematopoietic tissue situated in or outside the bone marrow. A certain hematopoietic cell gives rise to a corresponding hematologic malignancy that reflects the correlation between the classification of the hematologic neoplastic disorders and the scheme of hematopoiesis.

HEMATOLOGIC MALIGNANCIES originating from the bone marrow hematopoietic cells are known as leukemias. Those which develop from the extramedullary hematopoietic cells (in the lymph nodes, spleen, etc.) are named malignant lymphomas. There are acute and chronic leukemias.

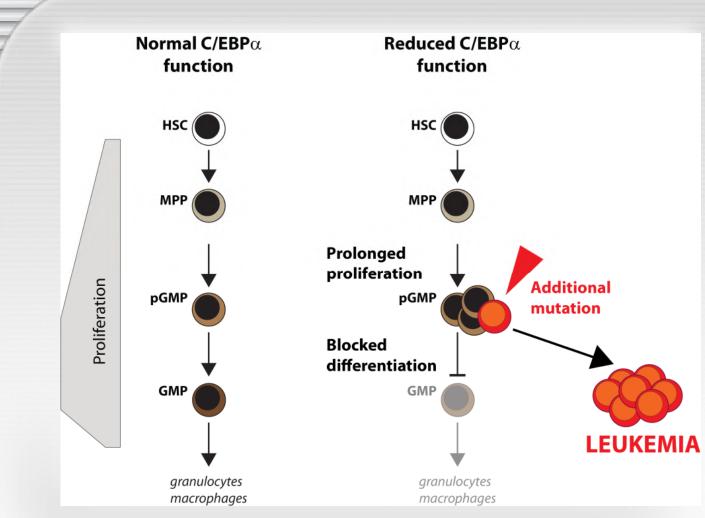
ACUTE LEUKEMIAS are the neoplastic disorders originating from blast cells. Chronic leukemias represent the hematologic malignancies, which develop from the precursor hematopoietic cells maintaining the ability for maturation up to mature cells. Acute leukemias can't be transformed in chronic leukemias.

In the majority of countries, in particular in Republic of Moldova leukemias and lymphomas are approximately equally frequent – by 50%. Malignant lymphomas comprise Hodgkin lymphoma, non-Hodgkin lymphomas, and histiocytoses. Acute leukemias are common in U.S.A., Canada, Israel, Scandinavian countries. In these states the incidence of acute leukemias ranges from 7.0 to 11.3 cases per 100000 population in males and from 5.0 to 7.0 per 100 000 in females. ACUTE LEUKEMIAS – are the malignant disorders resulting from a clonal proliferation and accumulation of blast cells. Acute leukemias affects persons of all ages and occurs more frequently in males. The morbidity by acute leukemias correlates with age. The incidence in Republic of Moldova constitutes 2.4 per 100 000 population. Acute lymphoblastic leukemia is common (85%) in children. Acute myeloid leukemias predominate in adults (85% of all cases).


PATHOGENESIS. Acute leukemias evolve from a single transformed blast cell. Neoplastic cell clone suppresses and replaces the normal cell clone. The failure of production of normal blood cells is caused by lack of normal hematopoiesis in the bone marrow. It is proved, that clinical manifestations of acute leukemias appear when the number of leukemic cells in organism constitutes approximately one billion.

CLINICAL PICTURE reflects the abnormalities in the bone marrow and in the blood. Anemic syndrome includes such symptoms as fatigue, dizziness, dispnea, palpitation, and pallor, weakness.

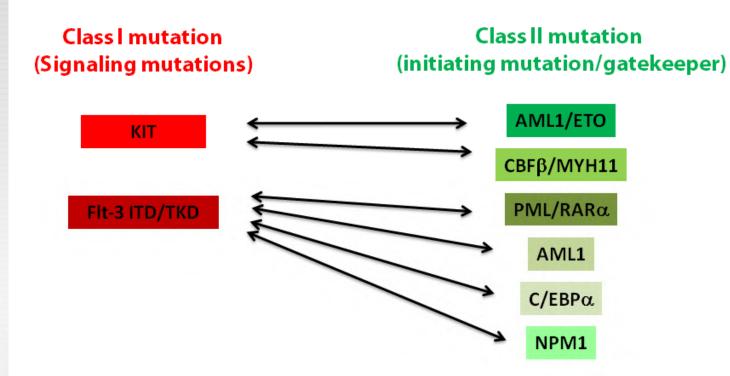
Hemorrhagic syndrome is caused by thrombocytopenia and comprises petechiae, ecchymoses, epistaxis, mucous membrane bleeding (gastrointestinal, etc.), cerebral bleeding, etc.


Neutropenia may lead to a predisposition to infections which may be focal (such as otitis, pharyngitis, or pneumonia) or systemic, with the signs and symptoms of sepsis.

Proliferation syndrom: The enlargement of lymph nodes is present in about 50% of cases, splenomegaly – in 30 %, and hepatomegaly is observed 49% of patients. **Mediastinal lymphadenopathy is observed in 8% of patients. Blast cells may infiltrate the skin.**

PATHOGENESIS OF ACUTE LEUKEMIAS

(source: Reckzeh K., Lund University, 2012: Deciphering the Pathogenesis of Acute Myeloid Leukemia)



Transcription factors (TF) such as C/EBPα control differentiation by activating myeloid gene programs and inducing cell cycle arrest. Due to reduced TF function highly proliferating progenitors do not enter the differentiation program and acquire additional mutations, preferentially those mutations that confer a growth or survival advantage such as FLT3-ITD (Rosenbauer and Tenen, 2007).


PATHOGENESIS OF ACUTE LEUKEMIAS

(source: Reckzeh K., Lund University, 2012: Deciphering the Pathogenesis of Acute Myeloid Leukemia)

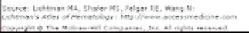
Oncogene cooperation in AML

Growing body of evidence suggests that signaling mutations cooperate with specific partners in leukemogenesis. Alterations of the same class are absent/rarely observed in AML. In addition, translocations inculding t(8;21) and inv(16) cluster together with KIT alterations whereas t(15;17), point mutations in *AML1* and *CEBPA* coincide with FLT3 activating mutations (Haferlach, 2008).

HEMORRHAGIC SYNDROME IN ACUTE LEUKEMIA

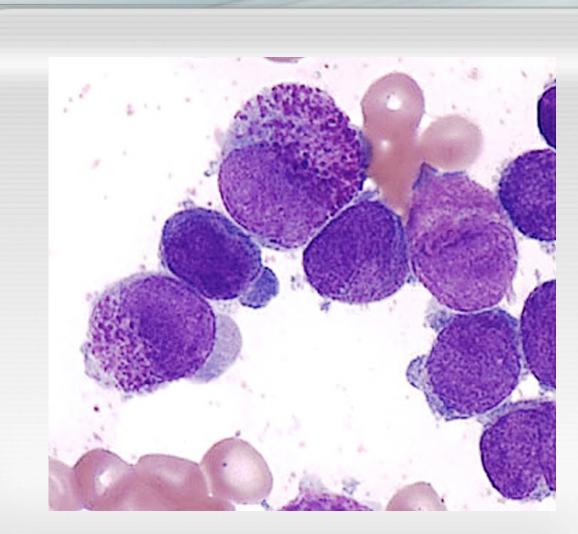
Hemorrhagic syndrome is caused by thrombocytopenia and comprises petechiae, ecchymoses, epistaxis, mucous membrane bleeding (gastrointestinal, etc.), cerebral bleeding, etc.

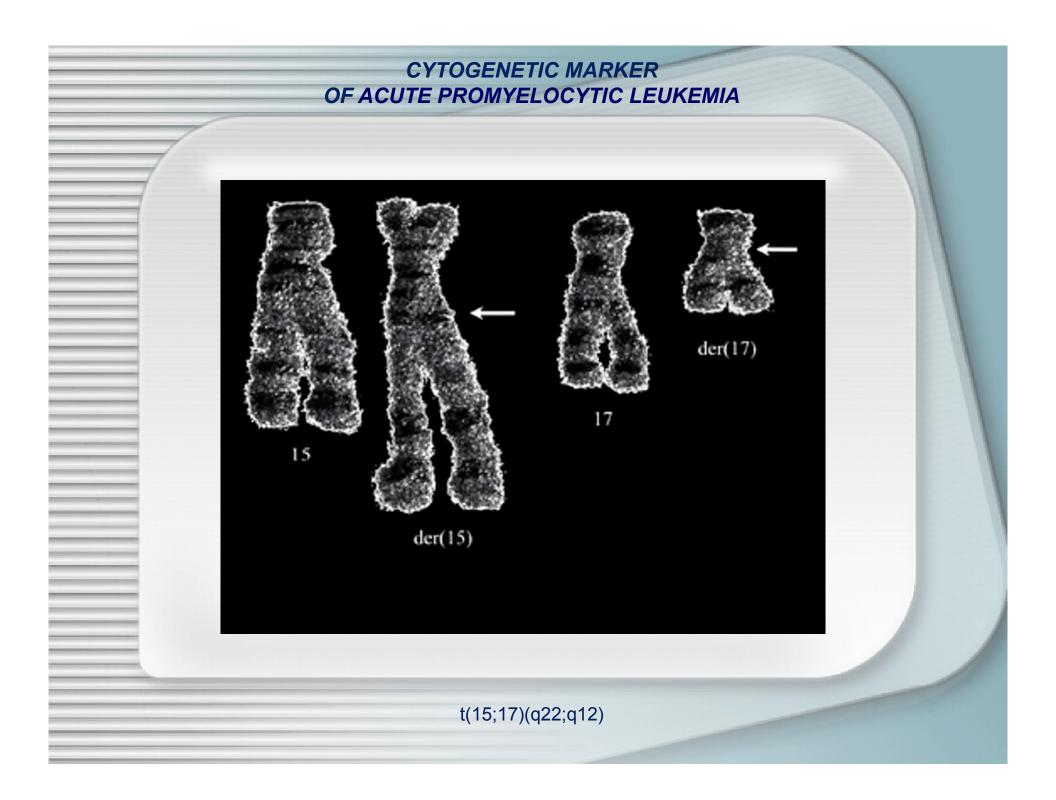
HEMORRHAGIC SYNDROME IN ACUTE LEUKEMIA

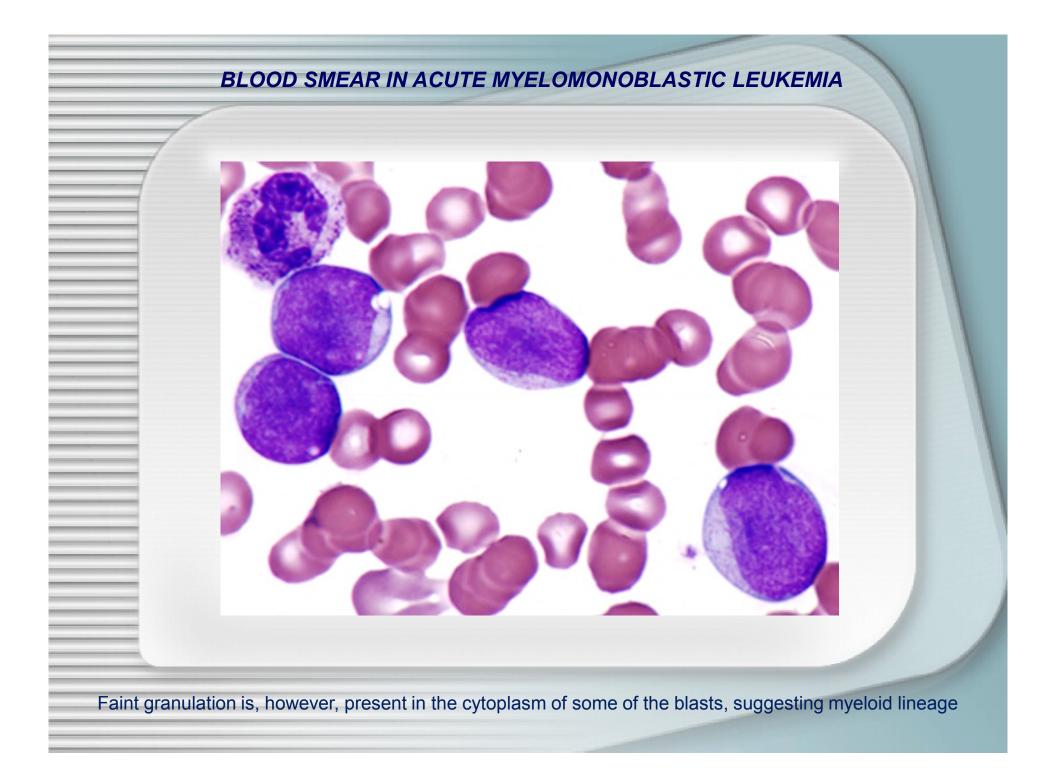


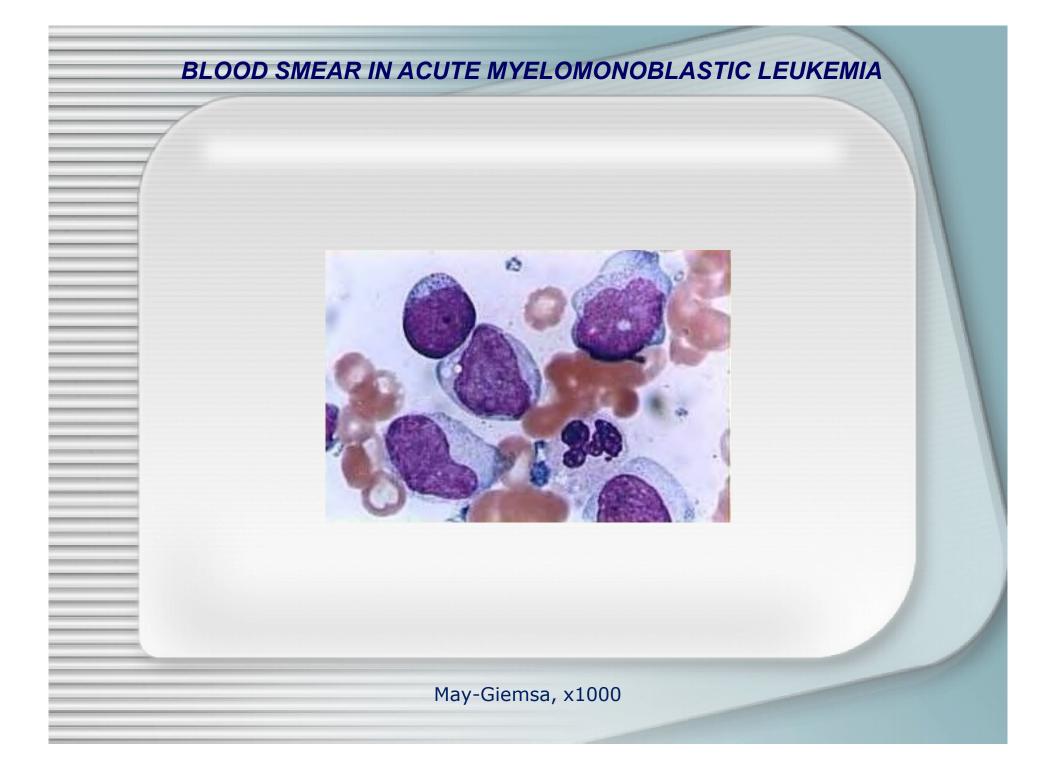
SKIN INFILTRATION BY BLAST CELLS IN ACUTE LEUKEMIA

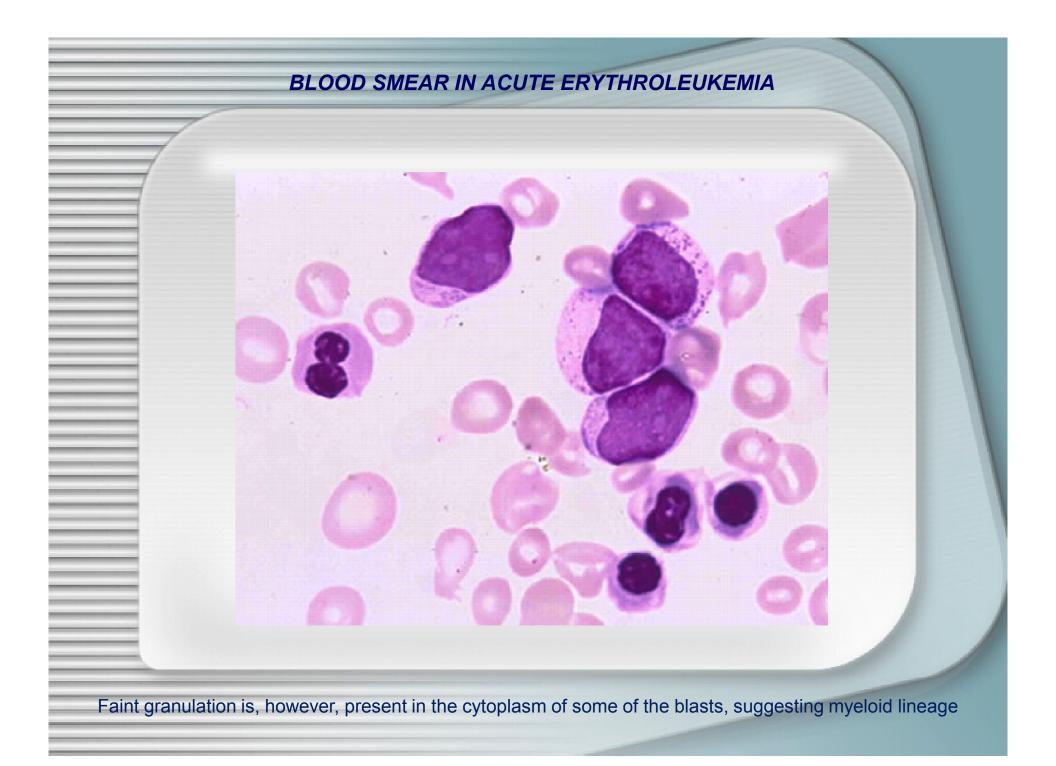
CLINICAL SIGNS OF ACUTE MYELOBLASTIC LEUKEMIA



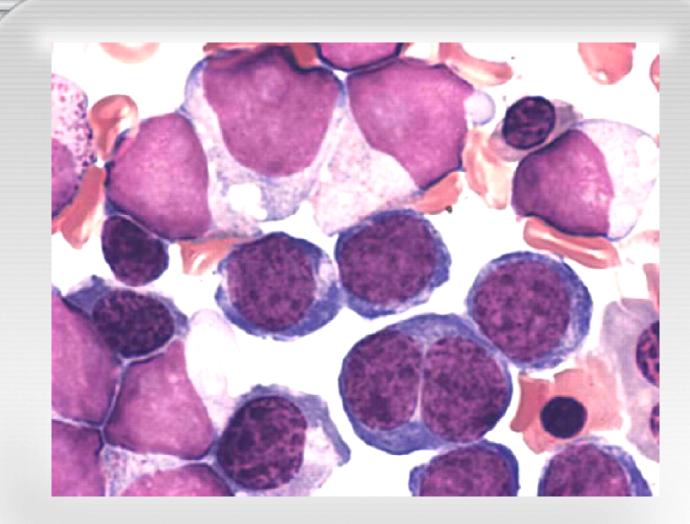

Leucemie acută

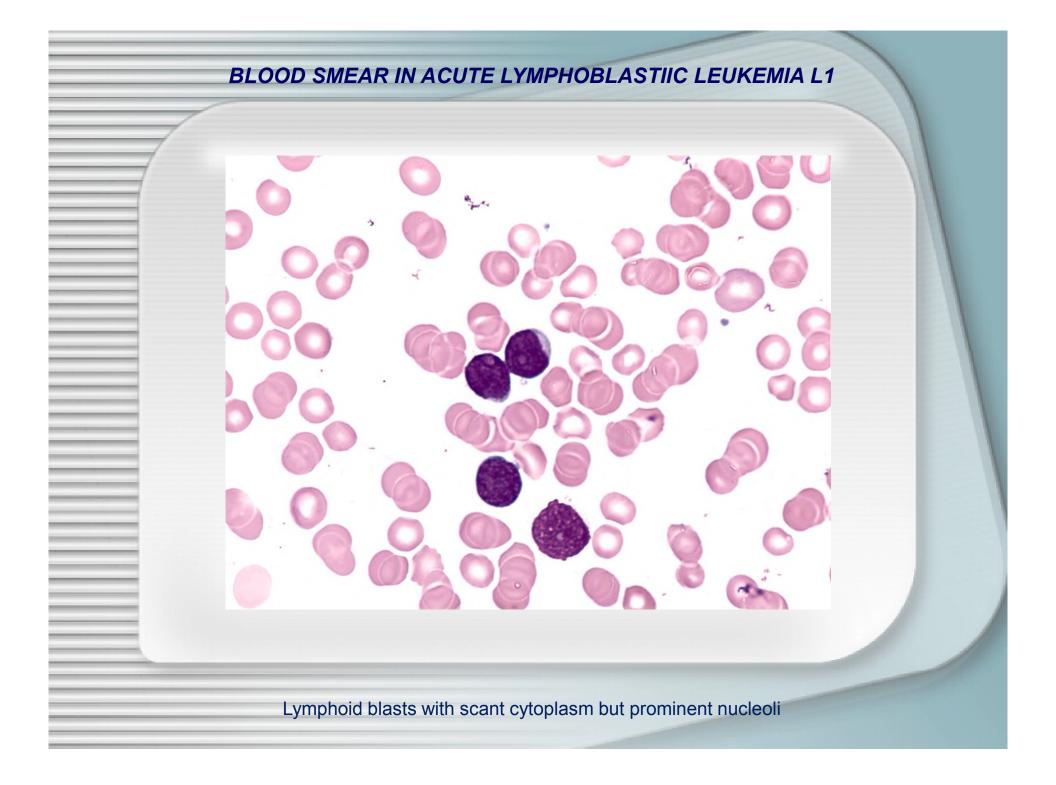

53	80	112
1,68	2,44	3,3
5,25	97,5	1,0
46	74	8
_	3	
1	1	
<u> </u>		<u> </u>
5	5	2
8	5	18
	<u> </u>	
_	_	_
39	5	70
1	7	2
solitare	24,4	170,0
70	10	11
	1,68 5,25 46 	1,68 2,44 5,25 97,5 46 74 3 1 1 5 5 5 8 5 39 5 1 7 solitare 24,4

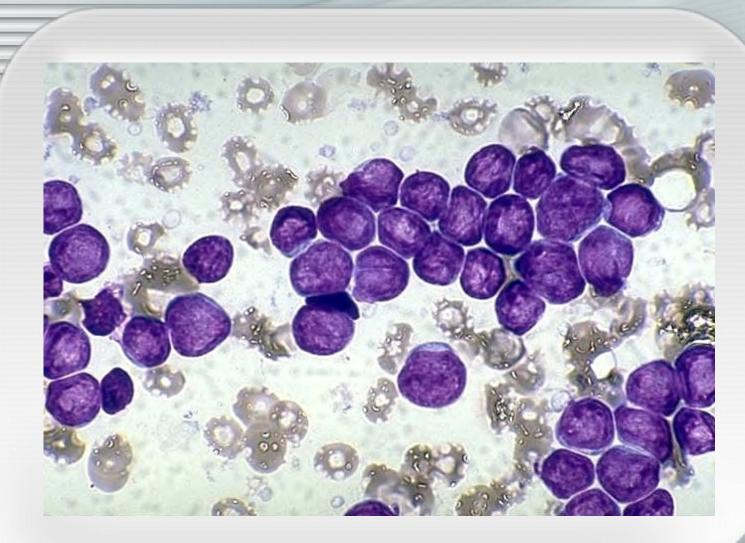




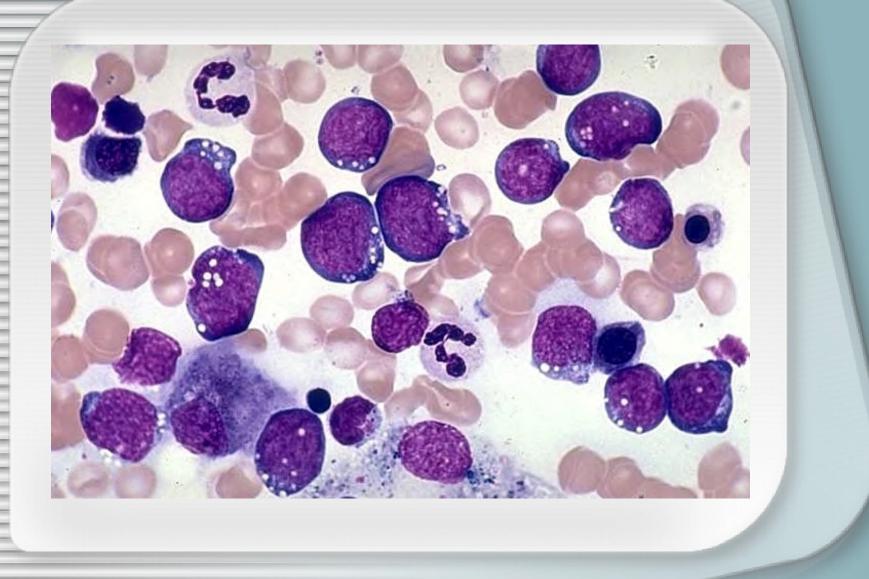
Promyelocytes are heavily granulated







Bone marrow smear showing erythroblasts with diffusely red-stained cytoplasm (PAS stain)



BONE MARROW SMEAR IN ACUTE LYMPHOBLASTIIC LEUKEMIA L1

May-Giemsa stain, x1000

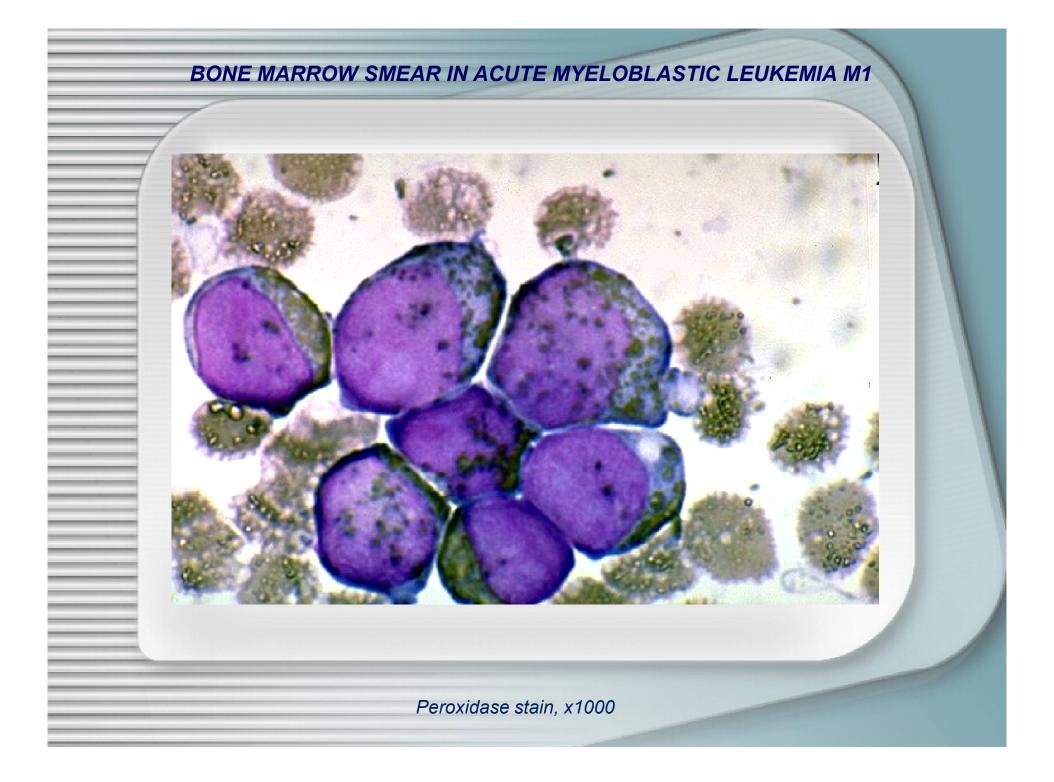
May-Giemsa stain, x1000

CYTOCHEMICAL REACTIONS IN ACUTE LEUKEMI	AS
---	----

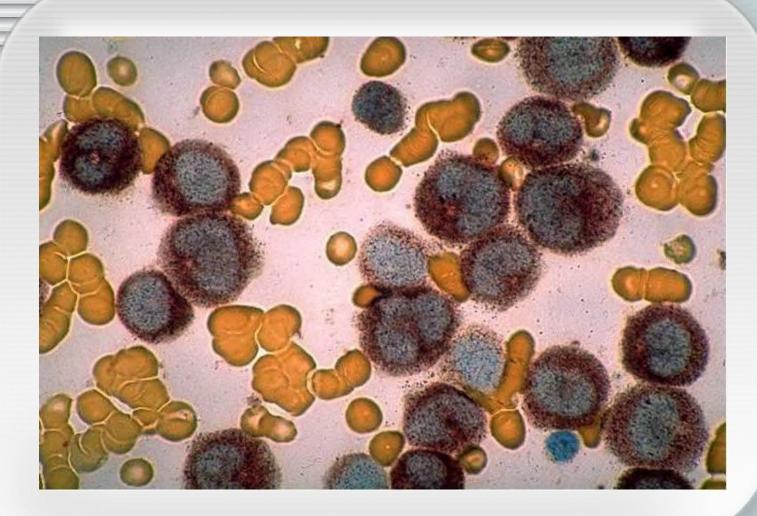
Reaction	on M1 M		М3	M4	M5	M6	L 1, 2, 3 ^b	
Peroxidase	+	+++	+++	+++	+	+ to ++°	Neg ^d	
Sudan black B		+++	+++	+++	+	+ to ++°	Neg	
NASDA ^e	+	+++	+++	+++	+++	+ to ++ ^c	Neg	
Fluoride inhibition	No	No	No	Variable	Yes	No		
PAS ^f	+	+	+	++	++	+	++ to +++	
Lysozyme ^d	Neg	Low	Low	Inter- mediate	High	Low	Neg	

+ = positive in a few cells; ++ = more than 25 % of cells are positive; +++ = 50 % or more of cells are positive.

^bT - cell acute lymphocytic leukemias often show acid phosphatase positive in the Golgi region (Stein et al., 1976). Diffuse acid phosphatase reactivity is a characteristic of myeloblasts.

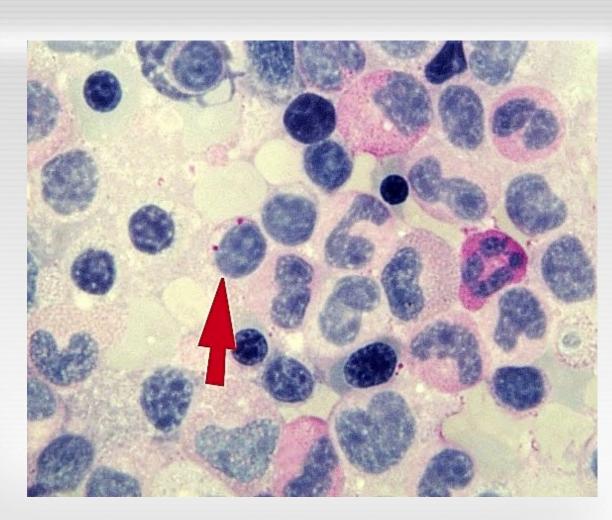

^cDepending on the number of granulocytes.

^dArbitrarily, when more than 3 % of the blasts are peroxidase positive, the disease is classified as other than acute lymphocytic leukemia.


^eNaphthol ASD chloroacetate.

^fPeriodic acid - Schiff reaction.

^dIn serum or urine.


BONE MARROW SMEAR IN ACUTE MONOBLASTIC LEUKEMIA M5b

alpha-naphthyl butyrate esterase and chloroacetate esterase stain, x1000

BONE MARROW SMEAR: PERIODIC-ACID SCHIFF (PAS) REACTION

PAS stain, x1000

LEUKEMIA CLASSIFICATION

	/														-11	
Classification	lassification Morphology		Cytochemistry				-	yeloid B arkers		B Cell Markers		T-Cell Markers		Platelet Marker	Other Markers	
		MPO	NSE	PAS	HLA-DR	CD 34	CD 13	CD 33	CD 10	CD 19	kappa/ lambda	CD2	CD5	CD7	CD61	
AML M0 (undifferentiated)	Blasts lack definitive cytologic and cytochemical markers of myeloblasts (MPO -), but express myeloid lineage antigens & resemble myeloblasts ultrastructurally	-	-		+	+/-	+	+/ -	-	-	-	-	-	-/+	-	
AML M1 (myeloblastic without maturation)	Look like myeloblasts without any maturation. High N:C ratio, small nucleolus, grayish-pink cytoplasm	+	-	-	+	-/+	+	+/ -	-	-	-	-	-	-/+		

		Cyto	chem	istrv	Ger	eral	Mve	loid	BO	Cell M	arkers	T-C	ell Mar	kers	Platelet	
Classification	Morphology							Markers							Marker	Other Markers
		MPO	NSE	PAS	HLA-DR	CD 34	CD 13	CD 33	CD 10	CD 19	kappa/ lambda	CD2	CD5	CD7	CD61	
AML M2 (myeloblastic with maturation)	Full range of myeloid maturation through granulocytes. Auer rods present in most cases.	+	-	-	+	- /+	+	+ /-	-	-	-	-	-	-/+	-	
AML M3 (promyelocytic)	Hypergranular promyelocytes , often with many Auer rods / cell.	++		-	-	-	+	+	-	-	-	-	-	-		t(15;17)

	/															
Classification	Morphology	Cytochemistry			General Myeloid Markers Markers			B(Cell M	arkers	ers I-Cell		I Markers Plate Mark		Other Markers	
		MPO	NSE	PAS	HLA-DR	CD 34	CD 13	CD 33	CD 10	CD 19	kappa/ lambda	CD2	CD5	CD7	CD61	
AML M4 (myelomonocytic)	Myelocytic and monocytic differentiation. Myeloid elements resemble M2 AML	+	+	+/-	+	-	+	+	-	-	-	-	-	-	-	inv(16) in M4-Eo
AML M5 (monoblastic/ monocytic)	Monoblastic without (M5a) or with (M5b) maturation. Tissue infiltration, organomegaly, lymphadenopa thy, common.	-	++	+/-	+	-	+	+	-	-	-			-		Occ. CD14

	/	_		_		-	_		_					-		
Classification	Morphology	Cyto	•			ieral kers	Mye Mari		B(Cell M	arkers	T-C	ell Mar	kers	Platelet Marker	Other Markers
		MPO	NSE	PAS	HLA-DR	CD 34	CD 13	CD 33	CD 10	CD 19	kappa/ lambda	CD2	CD5	CD7	CD61	
AML M6 (erythroleukemia)	Dysplastic erythroid precursors predominate, and within non-erythroid cells, > 30% are myeloblasts. "Chunky" PAS stain.	-	-	+	+/-	+/ -	-	-	-	-	-	-	-	-	-	Glyco- phorin A, CD71
AML M7 (megakaryo- blastic)	Blasts of megakaryocyte lineage predominate. Blasts react with specific antibodies directed against GPIIb/IIIa or vWF.	-		+/-	+	+/-	+ /-	+ /-	-	-	-			-	+	

Classification	Morphology				Markers Ma		Myeloid Markers				T-Co	ell Mar	kers	Platelet Marker		
		MPO	NSE	PAS	HLA-DR	CD 34	CD 13	CD 33	CD 10	CD 19	kappa/ lambda	CD2	CD5	CD7	CD61	
Pre-pre B ALL (lymphoblastic)	L1 or L2 morphology – scant to moderate cytoplasm, few vacuoles.	-	-	-/+	+	+	-	-	+/-	+	-	-	-	-	-	TdT, hyper- diploidy
Pre-B ALL (lymphoblastic)	"Sting of pearls" PAS stain L1 or L2 morphology – scant to moderate cytoplasm, few vacuoles.	-	-	-/+	+	+/ -	-	-	+	+	-	-	-	-	-	TdT, cytoplas- mic mu, t(1;19), t(11;23), t(9:22)

		Cytochemistry Ge			ochemistry General Myeld					biol	B		arkers	T-Cell Markers			Platelet	
Classification	Morphology	Cyto	,		Markers		-				1-00			Marker	Other Markers			
		MPO	NSE	PAS	HLA-DR	CD 34	CD 13	CD 33	CD 10	CD 19	kappa/ lambda	CD2	CD5	CD7	CD61			
Burkitt's leukemia/lympho ma (FAB type L3)	Clonal kappa/lambda stain L3 morphology, w/ prominent vacuoles, abundant cytoplasm, deep basophilia	-	-	-	+	-	-	-	+/-	+	+	-		-	•	t(8;14), t(2;8), t(8;22)		
T lymphoblastic Leukemia/ lymphoma	"String of pearls" PAS stain Often present with mediastinal mass.	-	•	-/+	+/-	-	-	-	-	-	-	+/-	+/-	+		TdT, CD1- /+, CD3-/+ CD4,8 double positive or double negative		

<u>http://www.labmed.washington.edu/Division/Hematology/leuk.dx.html</u> Morphology: Handout, lecture notes; Robins *Pathologic Basis of Disease*, 6th edition, p 676

TREATMENT PHASES IN ACUTE LEUKEMIAS

I. Remission induction;

II. Postinduction intensification (remission consolidation);

III. Presymptomatic CNS therapy (is indicated in children with all morphological types of acute leukemias, in adults with acute myelomonoblastic (M4) and monoblastic (M5) leukemias, and in those with leukocyte count $\geq 50.0 \times 10^9$ /l);

IV. Maintenance therapy (3 - 5 years).

INDUCTION AND CONSOLIDATION CHEMOTHERAPY IN ACUTE MYELOBLASTIC LEUKEMIAS

(Pazdur R., Coia L.R., Hoskins W.J. et al., Cancer Management: A Multidisciplinary Approach. 8th Edition. New York: CMP Healthcare Media)

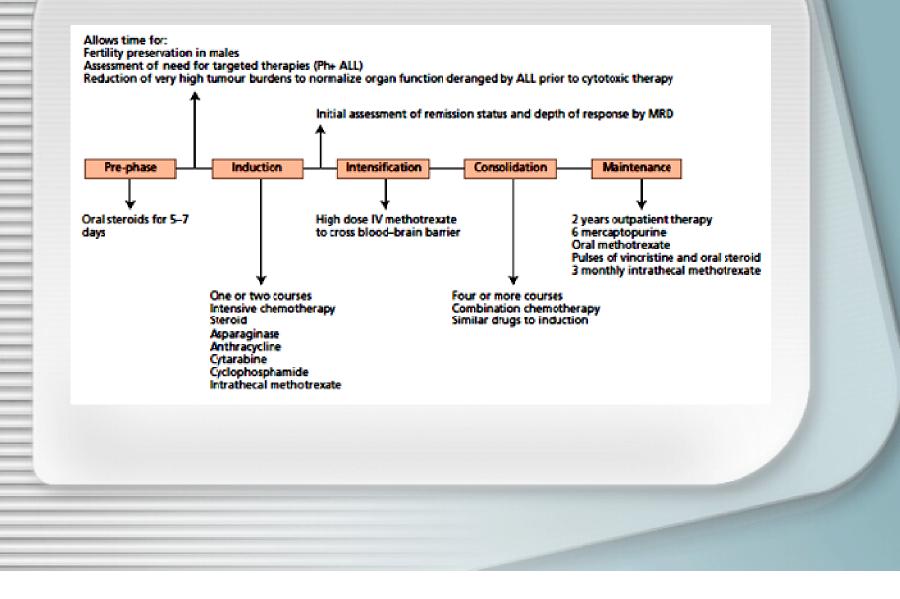
Inductio	n	Consolidation							
AML ind	duction and consolidation								
Ara-C	200 mg/m ² IV as continuous infusion \times 7 d	Ara-C ^b	3 g/m ² q12h IV as 2- to 3-h infusion on days 1, 3, 5; repeat q28d × 4 cycles						
IDA ^a	12 mg/m ² IV on days 1-3								
ALSG r	egimen								
Ara-C ^b	3 g/m ² IV q12h as 2- to 3-h infusion on days 1, 3, 5, 7	Ara-C	100 mg/m ² IV as continuous infusion \times 5 d						
	(8 doses)	Daun	50 mg/m ² IV \times 2 d						
Daun VP-16	50 mg/m ² IV on days 1-3 75 mg/m ² IV \times 7 d	VP-16	75 mg/m ² IV \times 5 d						

ALSG = Australian Leukemia Study Group;Ara-C = cytarabine; Daun = daunorubicin; IDA = idarubicin; VP-16 = etoposide

^a Idarubicin has been substituted for Daun, 45 mg/m², which had been the prevalent anthracycline used in clinical trials prior to 1993. Mitoxantrone, 10 mg/m² × 5 days, has also been used as an alternative.

^b For patients < 60 years of age

INDUCTION AND CONSOLIDATION CHEMOTHERAPY IN ACUTE PROMYELOCYTIC LEUKEMIA M3


Induct	tion	Consolidat	tion
Europ	ean APL study		
ATRA	45 mg/m^2 PO daily in 2 divided doses for a minimum of 45 d and a maximum of 90 d	Cycle I Repeat induc	ction doses of Ara-C and Daun
Ara-C	100 mg/m ² IV as a continuous infusion \times 7 d	Cycle 2 Ara-C	2 g/m² IV infused over h q 2h × 8 doses (days 1-4)
		6-MP	90 mg/m²/d PO + MTX 15 mg/m²/wk PO × 2 years
		+/- ATRA	45 mg/m²/d for 15 d every 3 months
Daun or	$60~mg/m^2~IV\times 3~d$	Daun	45 mg/m ² IV on days 1-3
	protocol 45 mg/m ² PO daily	Cycle I Ara-C	I g/m² IV infused over 6 h daily × 4 d
IDA	12 mg/m² IV on days 2, 4, 6, 8	plus IDA	5 mg/m²/d IV × 4 d (3 h after end of Ara-C infusion)
		Cycle 2 Mitox plus	10 mg/m²/d IV on days 1-5
		VP-16	100 mg/m ² × 5 d by 1-h infusion 12 h after Mitox
		Cycle 3 IDA plus	12 mg/m² IV on day 1
		Ara-C plus	$150~mg/m^2~SC~q8h \times 5~d$
		6-TG	70 mg/m² PO q8h \times 5 d

Ara-C = cytarabine; ATRA = all-*trans*-retinoic acid; Daun = daunorubicin; IDA = idarubicin; Mitox = mitoxantrone; MTX = methotrexate; 6-TG = 6-thioguanine; 6-MP = 6-mercaptopurine; VP-16 = etoposide

(Pazdur R., Coia L.R., Hoskins W.J. et al., Cancer Management: A Multidisciplinary Approach. 8th Edition. New York: CMP Healthcare Media)

TREATAMENT OF ACUTE LYMPHOBLASTIC LEUKEMIAS

(source: Postgraduate Haematology, Seventh Edition. Edited by A Victor Hoffbrand, Douglas R Higgs, David M Keeling and Atul B Mehta. © 2016 JohnWiley & Sons, Ltd. Published 2016 by JohnWiley & Sons, Ltd.)

INDUCTION AND CONSOLIDATION CHEMOTHERAPY IN ACUTE LYMPHOBLASTIC LEUKEMIAS: M.D. ANDERSON REGIMEN (HYPER-CVAD)

(Pazdur R., Coia L.R., Hoskins W.J. et al., Cancer Management: A Multidisciplinary Approach. 8th Edition. New York: CMP Healthcare Media)

Cyclophosphamide	300 mg/m ² infused over 3 hr $q12h \times 6$ doses (days 1-3)
Doxorubicin	25 mg/m ² /d continuous infusion over 24 hr \times 2 days to begin 12 hr after last cyclophosphamide (days 4 and 5)
Vincristine	1.4 mg/m ² (max 2 mg) IV on days 4 and 11
Dexamethasone	40 mg/d days 1-4 and 11-14
Alternate q21 c	with
Methotrexate (MTX)	l g/m² continuous infusion over 24 hr (day 1)
Ara-C	3 g/m² over 2 hr q12h $ imes$ 4 doses (days 2 and 3)
Leucovorin rescue	50 mg PO at end of MTX infusion and then 25 mg PO q6h \times 48 hr

INDUCTION AND CONSOLIDATION CHEMOTHERAPY IN ACUTE LYMPHOBLASTIC LEUKEMIAS

(Pazdur R., Coia L.R., Hoskins W.J. et al., Cancer Management: A Multidisciplinary Approach. 8th Edition. New York: CMP Healthcare Media)

Induct	tion .	Conse	olidation	CNS p	rophylaxis	Maintenance					
BFM F	BFM REGIMEN (Blood 85:123-131, 1988)										
Phase VCR DNR PSE L-Asp Phase CTX	2 mg IV on days 1, 8, 15, 22 25 mg/m ² IV on days 1, 8, 15, 22 60 mg/m ² PO on days 1-28 5,000 IU/m ² IV on days 1-14	Phase VCR Adria Dex Phase CTX	2 mg IV on days 1, 8, 15, 22 25 mg/m ² IV on days 1, 8, 15, 22 10 mg/m ² PO on days 1-28	Weeks MTX Cranial RT ^c	5-8 10 mg IT on days 31, 38, 45, 52 2,400 cGy (given along with phase II induction)	6-MP	60 mg/m ² PO on weeks 10-18 and 29-130 20 mg PO or IV weekly or weeks 10-18 and 29-130				
Ara-C 6-MP	(maximum, 1,000 mg) 75 mg/m ² IV on days 31-34, 38-41, 45-48, 52-55 60 mg/m ² IV on days 29-57		75 mg/m ² IV on days 31-34, 38-41 60 mg/m ² PO on days 29-42				t				

Adria = Adriamycin:Ara-C = cytarabine; BFM = Berlin-Frankfurt-Munster; CTX = cyclophosphamide; Dex = dexamethasone; DNR = daunorubicin; Dox = doxorubicin; L-Asp = L-asparaginase; 6-MP = 6-mercaptopurine; MTX = methotrexate; PSE = prednisone; RT = radiation therapy; 6-TG = 6-thioguanine; VCR = vincristine ^a Begin week 20 ^b For patients > 60 years old, modify doses as follows: CTX, 800 mg/m² on day 21; DNR, 30 mg/m² on days 1-3; PSE, 60 mg/m² on days 1-7

Cranial RT dose for prophylaxis is reduced to 1,800 cGy if patient is being considered for allogeneic BMT while in first CR

^d Weeks 5-12 ^e Weeks 13-25 ^f Begin week 26 ^g Until 24 months from diagnosis

INDUCTION AND CONSOLIDATION CHEMOTHERAPY IN ACUTE LYMPHOBLASTIC LEUKEMIAS

(Pazdur R., Coia L.R., Hoskins W.J. et al., Cancer Management: A Multidisciplinary Approach. 8th Edition. New York: CMP Healthcare Media)

	nduction and early intensification		hylaxis n maintenance	Late	intensification	Prolo	nged maintenance	
CALG	B REGIMEN (Blood 85:2025-2037, I	995)						
Course	Course I: Induction (4 wk)		CNS prophylaxis n maintenance ^e (12 wk)		se IV: Late sification ^f (8 wk)	Course V: Prolonged maintenance ^g		
стх	1,200 mg/m ² IV on day 1 ^b	Cranial RT	2,400 cGy on days 1-12	Dox	30 mg/m ² IV on days 1,	VCR	2 mg IV on day I of q4wk	
DNR	45 mg/m² IV on days ⊥-3 ^b	MTX	15 mg IT on days 1, 8, 15,		8, 5	PSE	60 mg/m²/d on days 1-5	
VCR	2 mg IV on days 1, 8, 15, 22		22, 29	VCR	2 mg IV on days 1, 8, 15		of q4wk	
PSE	60 mg/m²/d PO/IV on days 1-21 ^b	6-MP	60 mg/m²/d PO on days I-70	Dex	10 mg/m²/d PO on	MTX	20 mg/m² PO on days 1,8	
L-Asp	6,000 IU/m ² SC on days 5, 8, 11,	MTX	20 mg/m ² PO on days 36,		days I-14		15, 22	
	15, 18, 22		43, 50, 57, 64	СТХ	1,000 mg/m ² IV on	6-MP	80 mg/m²/d PO on	
					day 29		days 1-28	
Cours	e II: Early intensification ^d			6-TG	60 mg/m²/d PO on			
(4 wk;	repeat once)		· ·		days 29-42			
MTX	15 mg IT on day 1			Ara-C	C 75 mg/m²/d SC on			
СТХ	1,000 mg/m² IV on day I				days 29, 32, 36-39			
6-MP	60 mg/m²/d PO on days 1-14							
Ara-C	75 mg/m²/d SC on days 1-4, 8-11							
VCR	2 mg IV on days 15, 22							
L-Asp	6,000 IU/m ² SC on days 15, 18, 22, 25							

RESPONSE CRITERIA FOR TREATMENT OF ACUTE LEUKEMIAS

Complete remission: the disappearance of clinical and hematological evidence of acute leukemia; in the bone marrow aspirates the blast cells count does not exceed 5%, lymphocytes \leq 30%.

Partial remission: the disappearance of clinical symptoms of the disease, normalization of the blood count; in the bone marrow aspirates the blast cells count does not exceed 20%.

Clinical and hematological improvement: the significant regression of main clinical syndromes; hemoglobin exceeds 90g/l, mature granulocytes constitute $\geq 2.0 \times 10^9$ /l, thrombocyte count is $\geq 50.0 \times 10^9$ /l, the absence of positive changes in the bone marrow aspirates.

Response failure.

THANK YOU FOR YOUR ATTENTION!

