VASILE MUSTEATA, MD, PhD, MPH, associate professor; Department of Internal Medicine, Discipline of Hematology, State University of Medicine and Pharmacy "N. Testemitanu"

CLASSIFICATION OF ANEMIAS IRON-DEFICIENCY ANEMIA

CHISINAU – 2020

Anemia is functionally best characterized by a hemoglobin concentration and red cell count below normal. Anemia is a disorder in which the patient suffers from tissue hypoxia, the consequence of a low oxygen–carrying capacity of the blood.

CLASSIFICATION OF ANEMIAS:

I. Anemias due to the decreased red cell production,II. Anemias due to the increased red cell destruction (hemolytic),III. Anemias due to the acute blood loss.

ANEMIAS DUE TO THE DECREASED RED CELL PRODUCTION: iron deficiency anemia, megaloblastic anemias (vitamin B₁₂ deficiency, folate deficiency), aplastic anemias (including pure red cell aplasia), anemias of chronic disorders, renal anemia, anemia due to neoplastic infiltration of the bone marrow, myelodysplastic anemia.

Iron deficiency is the state in which the content of iron in the body is less than normal. It occurs in varying degrees of severity that merge imperceptibly into one another, and accounts 80 – 85% of all anemia cases. Iron deficiency anemia is the most advanced stage of iron deficiency, characterized by decreased or absent iron stores, low serum iron concentration, low transferrin saturation, and low hemoglobin concentration or hematocrit value.

In 2001 WHO/UNICEF estimated the number of anemic people worldwide to be a staggering two billion and that approximately 50% of all anemia could be attributed to iron deficiency. Data of WHO (1993) showed that approximately 44.5 % of preschoolers (3 - 6 years old), 8 - 15 % of fertile women, 45 - 50 % of pregnant women, and 37 % of school-age children were anemic. Data from Russian Federation (1998) demonstrated that anemia had been diagnosed in 30% of children of up 2 years old, in 60% of pregnant women, and in 30% of fertile women.

SCHEME OF IRON ABSORPTION

SCHEME OF IRON ABSORPTION

SCHEME OF IRON METABOLISM

SCHEME OF HEMOGLOBIN SYNTHESIS IN ERITROBLAST

Mechanisms of the development of iron deficiency

- Dietary iron deficiency
- Additional iron requirements
- Increased iron losses
- Malabsorption of iron

CAUSES OF IRON DEFICIENCY AND IRON DEFICIENCY ANEMIA

(Iron Deficiency - Investigation and Management. Guidelines and Protocols Advisory Committee; British Columbia, Canada, 2010)

Increased Requirements	Decreased Intake		
•Growing infants and children	•Low socioeconomic status		
•Menstruating women	•Vegetarian diet		
•Pregnancy	•Lack of balanced diet or poor intake		
•Lactation	•Alcoholism		
•Multiparity	•Elderly		
•Parturition	•High risk ethnic groups (First Nations, Indo-Canadians)		
Increased Loss	Decreased Absorption		
•Menorrhagia	•Dietary factors (tannins, phytates in fibre, calcium in		
•GI bleeding	milk, tea, coffee, carbonated drinks)		
Regular blood donors	•Upper GI Pathology:		
•Post-operative patients with significant blood loss	Chronic gastritis		
•Hematuria	Gastric lymphoma		
•Intestinal parasites (travel or immigration from an	Celiac disease		
endemic area)	Crohn's disease		
Intravascular hemolysis: hemoglobinuria	•Medications that decrease gastric acidity or bind iron		
	•Gastrectomy or intestinal bypass		
•Extreme physical exercise (endurance athletes)			
•Extreme physical exercise (endurance athletes) •Pathological (hemolytic anemias)	•Duodenal pathology		

EVOLUTIONAL STAGES OF IRON DEFICIENCY

Stages of iron deficiency	Serum ferritin	Plasma iron concentration	Hemoglobin
Prelatent deficiency	Decreased	Normal	Normal
Latent deficiency	Considerably decreased	Decreased	Normal
Iron deficiency anemia	Markedly decreased	Decreased	Decreased (anemia)

BLOOD SMEAR IN IRON DEFICIENCY ANEMIA

BLOOD SMEAR IN IRON DEFICIENCY ANEMIA

BONE MARROW SMEAR IN IRON DEFICIENCY ANEMIA: NUMEROUS ERYTHROBLASTS

BONE MARROW SMEAR IN IRON DEFICIENCY ANEMIA: DEFECTS OF HEMOGLOBINIZATION IN ERYTHROBLASTS

DETECTION OF FREE IRON IN THE BONE MARROW (PERLS REACTION)

PERLS REACTION IN IRON DEFICIENCY ANEMIA

LABORATORY DIFFERENTIATION OF IRON DEFICIENCY ANEMIA (IDA) VERSUS ANEMIA OF CHRONIC DISEASE (ACD)

(Iron Deficiency - Investigation and Management. Guidelines and Protocols Advisory Committee; British Columbia, Canada, 2010)

Investigation	Results In				
	IDA	ACD	ACD + IDA		
Serum Ferritin	\downarrow	1	↓ or normal		
Serum Iron	\downarrow	\downarrow	\downarrow		
Iron Binding Capacity	1	Ļ	↓ or low normal		
Transferrin Saturation / Fraction Saturation	Ļ	↓ or normal	Ļ		

PRINCIPLES OF TREATMENT AND MONITORING OF IRON DEFICIENCY ANEMIA:

(Iron Deficiency - Investigation and Management. Guidelines and Protocols Advisory Committee; British Columbia, Canada, 2010)

The goals of management of iron deficiency anemia are to treat its underlying cause and restore normal levels of red blood cells, hemoglobin, and iron.

Oral iron therapy is usually the first-line therapy for patients with iron deficiency anemia. Commonly used oral iron preparations include: ferrous gluconate, ferrous fumarate, and ferrous sulfate. One preparation is not preferred over another; patient tolerance should be the guide.

The usual adult dose is 180 mg of elemental iron/day in divided doses. Therapeutic doses can range from 100 to 200 mg of elemental iron/day, depending on severity of symptoms, ferritin levels, age of the patient, and gastrointestinal side effects.

Iron intolerance is very common; Oral iron preparations may cause nausea, vomiting, dyspepsia, constipation, diarrhea or dark stools. Strategies to minimize these effects include: start at a lower dose and increase gradually over 4 to 5 days; giving divided doses or the lowest effective dose, or taking supplements with meals (note: iron absorption is enhanced if supplements are taken on an empty stomach; however, it may not be tolerated). Although sustained release iron preparations tend towards less gastrointestinal side effects, they may not be as effective as standard film coated products due to reduced/poor iron absorption.

Iron absorption can be decreased by various medications and supplements; space administration apart by at least 2 hours.

Iron absorption from pharmaceutical preparations can be enhanced by taking them on an empty stomach (at least 1.5 to 2 hours after a meal), with acidic juices or vitamin C, and not with other multivitamin, calcium, or antacid tablets.

Iron replacement therapy may begin as soon as iron deficiency is detected; however, it is essential to determine and correct the underlying causes of iron.

PRINCIPLES OF TREATMENT AND MONITORING OF IRON DEFICIENCY ANEMIA:

Oral iron therapy in iron deficient anemia will increase hemoglobin by 10-20 g/L in 2 to 4 weeks. Order a Hematology Profile initially at 2 to 4 weeks to monitor response to replacement regimen.

Anemia will correct within 2 to 4 months if appropriate iron dosages are administered and underlying cause of iron deficiency is corrected.

Continue iron therapy an additional 4 to 6 months (adults) after the hemoglobin normalizes to replenish the iron stores. The frequency of subsequent monitoring depends upon the severity of the anemia, the underlying cause of the iron deficiency, and the clinical impact upon the patient.

If the patient's clinical status is compromised by moderate to severe anemia, consider admission to an acute care facility and blood transfusion. Once the patient is stable, iron replacement can be commenced.

Oral iron replacement is preferred to intravenous (IV) therapy. It is safer, more costeffective, and convenient when compared to IV therapy. However, intravenous therapy ((iron dextran, sodium ferric gluconate, iron sucrose) may be substituted when there is: inadequate iron absorption, continued uncorrectable blood loss, noncompliance or intolerance to oral iron therapy, non-adherence, or a hemoglobin level less than 6 g per dL (60 g per L) with signs of poor perfusion in patients who would otherwise receive transfusion (e.g., those who have religious objections). Internal medicine/hematologist consultation is recommended.

Complete or partial failure of monitored iron therapy trial (in compliant patients) may be due to insufficient absorption or ongoing loss (e.g. hemorrhage) or both. It should be investigated appropriately. Intravenous iron preparations may be considered in these patients. Intramuscular (IM) iron therapy is not recommended except in institutions with facility for treating anaphylactic reactions. Additional risks of IM iron therapy include unpredictable absorption and local complications (e.g. pain, staining of the skin, sarcoma formation).

THANK YOU FOR YOUR ATENTION!

